R
Ralf Bartling
Guest
Hallo NG,
ich nutze LTspice noch nicht sehr lange und bin nun auf ein Problem bei
der Verwendung eines IGBT Modells der Fa. Infineon gestoßen.
Das Modell bzw. die Bibliothek lautet wie folgt:
*****************************************************************
* Level2 Version of 600V HS-IGBT/EMCON HEDIODE Models feb 2002 *
*****************************************************************
* INFINEON TECHNOLOGIES AG duo_p_n60HS_L2.LIB *
* *
* (V1.0a) 02/02 *
* *
* Models provided by INFINEON are not warranted by INFINEON as *
* fully representing all of the specifications and operating *
* characteristics of the semiconductor product to which the *
* model relates. The model describe the characteristics of a *
* typical device. *
* In all cases, the current data sheet information for a given *
* device is the final design guideline and the only actual *
* performance specification. *
* Altough models can be a useful tool in evaluating device *
* performance, they cannot model exact device performance under *
* all conditions, nor are they intended to replace bread- *
* boarding for final verification. INFINEON therefore does not *
* assume any liability arising from their use. *
* INFINEON reserves the right to change models without prior *
* notice. *
* *
* This library contains Level 2 models for the following *
* INFINEON Technologies 600 V HS_IGBT/EMCON HE Power Diodes *
* devices/chip-models including lead inductances related *
* *
* Model for 600 V HS-IGBT/EMCON-FAST DuoPacks *
* devices/chip-models including lead inductances related to *
* packages: *
* SKW20N60HS *
* SKW30N60HS *
* *
* the model is based on the publication: *
* *
* R.Kraus, P.Türkes, J.Sigg *
* Physics-based Models Of Power Semiconductor Devices *
* For The Circuit Simulator Spice *
* *
* Power Electronics Specialists Conference, 1998. *
* PESC 98 Record. 29th Annual IEEE *
* *
* SUPPORTemail: simulate@infineon.com *
*****************************************************************
..SUBCKT SKW20N60HS_L2 ano gate kat PARAMS: TJ = 27
LANO ano anol 5n
RLAN ano anol 1
LKAT katl kat 7n
RLK katl kat 1
XIGBT anol gate katl L7xxxU_L2 PARAMS: TJ = {TJ} A_total 0.185 A_aktiv=0.142
XDIO katl anol L4XXX-M PARAMS: TJ = {TJ} A=0.0512 N_ideal = 1.05
..ENDS
..SUBCKT SKW30N60HS_L2 ano gate kat PARAMS: TJ = 27
LANO ano anol 5n
RLAN ano anol 1
LKAT katl kat 7n
RLK katl kat 1
XIGBT anol gate katl L7xxxU_L2 PARAMS: TJ = {TJ} A_total 0.257 A_aktiv=0.207
XDIO katl anol L4XXX-M PARAMS: TJ = {TJ} A=0.067 N_ideal = 1.05
..ENDS
..SUBCKT L4XXX-M anode kath PARAMS: TJ= 27 A = 1 N_ideal = 1
* physical parameters: Nd = 1.2e14
..PARAM
+q = 1.602e-19 eps0 = 8.85e-14 epsi = 11.8
+kb = 1.38e-23 T0 = 273 ni0 = 1.45e10
+un = 1350 up = 450
..PARAM tau = 0.5u
..PARAM Nd = 1.2e14 w0 = 70e-4
..PARAM SF = -1 BV = 800 Rc = .6m
..PARAM vlimit =1.5e7
..PARAM Vdiff= 0.396m
..PARAM Ut = 23.5m
..PARAM D = 15.87
..PARAM L = 2.817m
..PARAM Ise0 = {A*356.2p}
..PARAM Ise_g = {A*0.333p}
..PARAM Ism0 = {A*26.173u}
..PARAM Ism_g = {A*2*q}
..PARAM CJ0 = {A*3.787n}
..PARAM QN = {A*134.57n}
..PARAM XF = 3610.7
..PARAM VPT= 450
..PARAM a0 = {SF*tanh(1.2425)}
..PARAM a1 = {(up/un)*(1 + a0)/(1 - a0)}
..PARAM a2 = {0.1/((1 - 0.5*(1 - a1*a1)*(1 - a0)) )}
..PARAM Rd0 = {269.72m/A}
..PARAM Ra = {739.82u/A}
RSERIE anode ano {Ra}
GDE ano mi VALUE + {LIMIT(TANH(1e3*I(VDE))*(((ISE(TJ)**((t0 + TJ)/(t0 +
27)))/ISE(27))**((t0 + 27)/(t0 + TJ))
+ * ABS(I(VDE))**((t0 + 27)/(t0 + TJ)) - ABS(I(VDE))),-1e6,1e6)}
GD0 ano mi1 VALUE + {LIMIT(TANH(1e3*I(VD0))*(((ISM(TJ)**((t0 + TJ)/(t0 +
27)))/ISM(27))**((t0 + 27)/(t0 + TJ))
+ * ABS(I(VD0))**((t0 + 27)/(t0 + TJ)) - ABS(I(VD0))),-1e6,1e6)}
VDE ano ano1 0
DE ano1 mi D1
D0 ano2 mi1 D2
VD0 ano ano2 0
..model D1 D (is={Ise0}, N= {N_ideal})
..model D2 D (is={Ism0}, N=2)
VID0 mi1 mi 0
VITOT kat kathv 0
EVDIFF kathv kath VALUE = {(TJ + t0)* Vdiff}
EGIR mi kat VALUE = {I(VITOT)*Rd(V(q,0),TJ)}
GID ano mi VALUE = {IQ(V(xj,0),I(VID0),V(q,0),I(VDXJ),TJ) - I(VIJCT)}
RGID mi 0 100meg
CQB q 0 1u
RHELP q 0 1meg
GRQB q 0 VALUE = {1u*V(q,0)/(Tau*((TJ + t0)/300)**2) }
GIQ 0 q VALUE = {MAX(I(VID0),0) +
IQ(V(xj,0),I(VID0),V(q,0),I(VDXJ),TJ)}
EXJ xj1 0 VALUE {MAX(xj(V(ano,mi),I(VITOT),V(xj1,0)),1e-4) }
CXJ xj 0 1n
VDXJ xj1 xj 0
EJUNCT jct 0 VALUE = {LIMIT(V(kat,ano),0,VPT)}
VIJCT jct cp 0
DJCT 0 cp DXXX
..MODEL DXXX D (is = 1p, CJO= {CJ0})
..FUNC EG(T) {1.16 - 7.02e-4*(T + t0)**2/(T + t0 + 1108)}
..FUNC DA(T) {2*kb*un*up/q/(un + up)*(T + t0)*(((T + t0)/300)**-1.5)}
..FUNC ISE(T) {(T + t0)*un*(((T + t0)/300)**-1.5)*((ise_g*(ni0*((T
+ t0)/300)**1.5*exp(1/(2*8.61e-5)
+ *(-300*EG(T)+(t0 + T)*EG(27))/(T + t0)/300)))
+ *(kb*(ni0*((T + t0)/300)**1.5*exp(1/(2*8.61e-5)*(-300*EG(T)+(t0 +
T)*EG(27))/(T + t0)/300))))}
..FUNC ISM(T) {Ism_g*(ni0*((T +
t0)/300)**1.5*exp(1/(2*8.61e-5)*(-300*EG(T)+(t0 + T)*EG(27))/(T +
t0)/300))
+ *sqrt(DA(T)/(Tau*((T + t0)/300)**2))}
..FUNC xj(V,Y2,X)
{0.5*((XF*XF*((1-limit(V,-VPT,0)))/(Nd+MAX(up*(-Y2)/(un+up),0)/A/q/(vlimit)))/MAX(X,.1m)
+ MAX(X,.1m))}
..FUNC w(V) {MAX((w0-V)*(1 + a1),1e-4)}
..FUNC Rd(Z,T) {w0*w0/(un*QN*(((T + t0)/300)**-1.5) + (un +
up)*MAX(Z,1m*QN)*1e-6*(((T + t0)/300)**-1.5))}
..FUNC Td(V,U,T) {a2*w(V)*w(V)/DA(T)/(1 +
w(V)*1e9*LIMIT(U,0,1)/4/DA(T))}
..FUNC IQ(V,Y,Z,U,T) {((Tau*((T + t0)/300)**2)*Y -
MAX(Z,1m*QN)*1e-6)/(Td(V,U,T))}
* end of functions
..ends
..SUBCKT L7xxxU_L2 ano gate kat PARAMS: TJ = 27 A_total 0.1 A_aktiv=0.1
..PARAM
+k=1.380622e-23 q = 1.6E-19 t0=273 ni0=1.45e10
+eps0 = 8.85E-14 epsi =11.8 eox= 2.8
+un = 1350 up = 450 u_surf=600
+a1 = 0.55 vlimit= 1.5e7 vsw= -0.5
..PARAM tox = 80e-7 ttox = 1.5e-4 wb = 90E-4 lchann = 2.5e-4
..PARAM n_cells = {A_aktiv*118.91k}
..PARAM wchann = {n_cells*5.2m}
..PARAM Agd = {n_cells*6.72u}
..PARAM Cox = {Agd*30.975n}
..PARAM Cgs = {n_cells*4.536e-14}
..PARAM Nb = 15E13 taub = 125u Nsource= 1.5e17 BV_FW=800 BV_RW=280
..PARAM Rs = 2.5m Rg = 0.5
..PARAM Cjs = {A_aktiv*4.2338n}
..PARAM Cje = {(A_total/A_aktiv)*Cjs}
..PARAM Ise_x = {A_total*940.1p}
..PARAM Ise_g = {A_total*0.8p}
..PARAM Ise_k = {A_total*15.668p}
..PARAM EG0 = {1.16 - (7.02e-4*(t0+27)**2/((t0+27)+1108))}
..PARAM ni_fak = {ni0*exp(EG0*q/(2*k*(t0+27)))}
..PARAM D = 17.55
..PARAM L = 46.837m
..PARAM Q0 = {A_aktiv*216.27n}
..PARAM VPT= 930
..PARAM VN = {2.51e-17*Agd*Agd/Cox/Cox}
..PARAM XF = 294.82u
..PARAM islimit = 0.3f
MFET d g s s MOS W={wchann/100},L={lchann/100} , IC=OFF
GMFET_T d1x s VALUE = {LIMIT(I(VINC0)*((TJ+t0)/300)**-1.5,0,1e6) }
GDE ano e1 VALUE + {LIMIT(TANH(1e3*I(VDE))*(((ISE2(TJ)**((t0 + TJ)/(t0 +
27)))/ISE2(27))**((t0 + 27)/(t0 + TJ))
+ * ABS(I(VDE))**((t0 + 27)/(t0 + TJ)) - ABS(I(VDE))),-1e6,1e6)}
VDE ano anx 0
DE anx e1 D1
DS kat d1 D2
..MODEL MOS NMOS
(LEVEL=3,nsub={Nsource},tox={tox/100},vmax={vlimit},uo={u_surf},CGSO=1p,CGDO=1p)
..MODEL D1 D (IS={Ise_x},N =1.1)
..MODEL D2 D (IS={Ise_k},CJO={CJS},BV= {2*BV_FW})
ETHERM g_t g VALUE = {DVt(TJ)}
RG gate g_t {Rg*(((TJ + t0)/300)**1.5)}
RS s kat {Rs}
EVGCOX vgcox 0 VALUE { V(ox,kat)-{vsw} }
RVGC vgcox 0 100meg
GICOX g ox VALUE = {LIMIT((Cox/100 +
99*Cox*(1+tanh(10*(V(vgcox))))/200)* 1e9*I(VDUGD),-100,100)}
GICGS g s VALUE = {LIMIT((Cgs +
99*Cox*(1+tanh(-10*(V(vgcox))))/200)*1e9* I(VDUGS),-100,100)}
EDEP d1 ox VALUE = {LIMIT(Vdep(V(d1,g),V(xj,0)),0,V(d1,g))}
RDEP ox 0 100meg
EGIA e d1 VALUE = {I(VIA)*Rb(V(b,0),TJ)}
GIC d1 kat VALUE {LIMIT(IPC(I(VINC),V(b,0),V(xj,0),I(VDXJ),TJ),-1e6,1e6)}
RGIC d1 0 100meg
CQB b 0 1u
RHELP b 0 1meg
GRQB b 0 VALUE {1u*V(b,0)/(Taub*((TJ + t0)/300)**2) }
GINC 0 b VALUE {MAX(I(VINC),0)}
GINE b 0 VALUE {INE(I(VINC),V(b,0),V(xj,0),I(VDXJ),TJ)}
VIA e1 e 0
EAUX1 d12 s VALUE = {V(d1,s)}
VINC0 d12 d 0
VINC d1 d1x 0
EXJ xj1 0 VALUE {MAX(xj(V(d1,kat),V(xj1,0)),1e-4)}
CXJ xj 0 1n
VDXJ xj1 xj 0
EDUGS du1 0 VALUE {V(g,s)}
VDUGS du1 du1c 0
CDUGS du1c 0 1n
EDUGD du2 0 VALUE {V(g,ox)}
VDUGD du2 du2c 0
CDUGD du2c 0 1n
..FUNC EG(T) {1.16 - 7.02e-4*(T+t0)**2/(T+t0 + 1108)}
..FUNC
ni(T) {1e-10*ni0*((T+t0)/300)**1.5*exp(1/(2*8.61e-5)*(-300*EG(T)+(t0+T)*EG(300))/(T+t0)/300)}
..FUNC psi2(T) {2*k/q*(T + t0)*(log(Nsource/ni(T)) - log(1e10))}
..FUNC DVt(T) {psi2(T) - psi2(27) +
tox*(sqrt(2*eps0*epsi*q*Nsource*psi2(T))
+ - sqrt(2*eps0*epsi*q*Nsource*psi2(27)))/eps0/eox}
..FUNC DA(T) {2*k*un*up/q/(un + up)*(T + t0)*(((T + t0)/300)**-1.5)}
..FUNC LA(T) {sqrt(DA(T) * Taub*((T+t0)/300)**2) }
..FUNC ISE2(T) {LIMIT(1e20*ise_g*k*(T
+t0)*(un*((T+t0)/300)**-1.5)*ni(T)*ni(T),0,1e8)}
..FUNC Vdep(V,X) {LIMIT(V - Agd/Cox * (q*Nb)* X,0,V)}
..FUNC Rb(X,T) {wb*wb/(un*Q0*(((T + t0)/300)**-1.5) + (un +
up)*MAX(X,1m*Q0)*1e-6*(((T + t0)/300)**-1.5))}
..FUNC xj(V,X) {LIMIT(0.5*(XF*XF*(1+LIMIT(V,0,VPT))/MAX(X,.1m)
+MAX(X,.1m)),.1m,wb-1e-4)}
..FUNC FDX(V,X,T) {TANH(MAX(wb-V,.1m)*1e9*LIMIT(X,0,1)/(24*DA(T)))}
..FUNC Td(V,X,T) {LIMIT((0.1/DA(T))*MAX(wb-V,.1m)*MAX(wb-V,.1m)*(1-FDX(V,X,T)),-1e6,1e6)}
..FUNC F1(V,T) {LIMIT(Taub*((T+t0)/300)**2*(COSH(MAX(wb-V,.1m)/LA(T))-1),-1e6,1e6)}
..FUNC F2(V,X,T) {LIMIT(0.5*(1+2*FDX(V,X,T)/(1+FDX(V,X,T)*FDX(V,X,T))),-1e6,1e6)}
..FUNC F3(V,X,T) {LIMIT(1+Td(V,X,T)/(Taub*((T+t0)/300)**2),-1e6,1e6)}
..FUNC QS0(V,T) {LIMIT(q*A_aktiv*LA(T)*1e10*ni(T)*TANH(0.5*MAX(wb-V,.1m)/LA(T)),0,1e6)}
..FUNC Qbd(Y,Z,V,X,T) {LIMIT(MAX(Z,1m*Q0)*1e-6+Td(V,X,T)*Y,0,1e6)}
..FUNC Qb0(Y,Z,V,X,T) {LIMIT(2*Qbd(Y,Z,V,X,T)/(F3(V,X,T)+SQRT(F3(V,X,T)*F3(V,X,T)
+ +
Td(V,X,T)*3*MAX(ISE2(T),islimit)*Qbd(Y,Z,V,X,T)/QS0(V,T)/QS0(V,T))),0,1e6)}
..FUNC INE(Y,Z,V,X,T) {LIMIT(0.75*MAX(ISE2(T),islimit)*(Qb0(Y,Z,V,X,T)/QS0(V,T))*(Qb0(Y,Z,V,X,T)/QS0(V,T)),0,1e6)}
..FUNC IPC(Y,Z,V,X,T) {LIMIT((1/3)*Y+(4/3)*(Qb0(Y,Z,V,X,T)/F1(V,T)
+
+MAX(Qb0(Y,Z,V,X,T)/Taub/((T+t0)/300)**2+INE(Y,Z,V,X,T)-Y,0)*F2(V,X,T)),0,1e6)}
..ENDS
Ich verwende zur Zeit das Modell des SKW20N60HS. Es handelt sich
hierbei um einen IGBT mit eingebauter Freilaufdiode. Insofern werden
durch das Modell eigentlich zwei Bauteile beschrieben.
Wenn ich diese Bibliothek in LTspice einbinde, bekomme ich am Ende der
Simulation die folgende Fehlermeldung:
Circuit: * E:\Projekte\DDx00\doc\igbt2.asc
Error on line 162 : m:u1:igbt:fet u1:igbt:d u1:igbt:g u1:igbt:s
u1:igbt:s u1:igbt:mos w= 0.87803144 ,l= 2.5e-006 , ic=off
No such parameter on this device
Early termination of direct N-R iteration.
Direct Newton iteration failed to find .op point. (Use ".option
noopiter" to skip.)
Starting Gmin stepping
Gmin = 10
vernier = 0.5
vernier = 0.25
Gmin = 3.62829
vernier = 0.125
vernier = 0.0625
vernier = 0.03125
vernier = 0.015625
vernier = 0.0078125
vernier = 0.00390625
vernier = 0.00195313
vernier = 0.000976563
Gmin = 3.73824
vernier = 0.000488281
vernier = 0.000244141
vernier = 0.00012207
vernier = 6.10352e-005
vernier = 3.05176e-005
vernier = 1.52588e-005
vernier = 7.62939e-006
vernier = 3.8147e-006
vernier = 1.90735e-006
vernier = 9.53674e-007
Gmin = 3.73824
vernier = 4.76837e-007
vernier = 2.38419e-007
vernier = 1.19209e-007
vernier = 5.96046e-008
vernier = 2.98023e-008
vernier = 1.49012e-008
vernier = 7.45058e-009
vernier = 3.72529e-009
vernier = 1.86265e-009
vernier = 9.31323e-010
Gmin = 3.73824
vernier = 4.65661e-010
vernier = 2.32831e-010
vernier = 1.16415e-010
vernier = 5.82077e-011
vernier = 2.91038e-011
Die Fehlermeldung erscheint erst am Ende des Simulationsdurchlaufes,
wobei die Ergebnisse eigentlich plausibel sind und sich mit
physikalisch durchgeführten Messungen decken .
Hat jemand schon einmal ein solches Problem gehabt und weiß, wie man
es abstellt ?
Bezieht sich die Angabe der Zeile in der Fehlermeldung auf das Modell ?
In den Modell taucht ein Parameter TJ (Chiptemperatur ?) auf. Kann man
hier möglicherweise das Verhalten des IGBT auch bei verschiedenen
Chiptemperaturen simulieren.
Falls hier jemand Rat weiß, wäre ich für einen Hinweis sehr dankbar.
Vielen Dank
Ralf Bartling
ich nutze LTspice noch nicht sehr lange und bin nun auf ein Problem bei
der Verwendung eines IGBT Modells der Fa. Infineon gestoßen.
Das Modell bzw. die Bibliothek lautet wie folgt:
*****************************************************************
* Level2 Version of 600V HS-IGBT/EMCON HEDIODE Models feb 2002 *
*****************************************************************
* INFINEON TECHNOLOGIES AG duo_p_n60HS_L2.LIB *
* *
* (V1.0a) 02/02 *
* *
* Models provided by INFINEON are not warranted by INFINEON as *
* fully representing all of the specifications and operating *
* characteristics of the semiconductor product to which the *
* model relates. The model describe the characteristics of a *
* typical device. *
* In all cases, the current data sheet information for a given *
* device is the final design guideline and the only actual *
* performance specification. *
* Altough models can be a useful tool in evaluating device *
* performance, they cannot model exact device performance under *
* all conditions, nor are they intended to replace bread- *
* boarding for final verification. INFINEON therefore does not *
* assume any liability arising from their use. *
* INFINEON reserves the right to change models without prior *
* notice. *
* *
* This library contains Level 2 models for the following *
* INFINEON Technologies 600 V HS_IGBT/EMCON HE Power Diodes *
* devices/chip-models including lead inductances related *
* *
* Model for 600 V HS-IGBT/EMCON-FAST DuoPacks *
* devices/chip-models including lead inductances related to *
* packages: *
* SKW20N60HS *
* SKW30N60HS *
* *
* the model is based on the publication: *
* *
* R.Kraus, P.Türkes, J.Sigg *
* Physics-based Models Of Power Semiconductor Devices *
* For The Circuit Simulator Spice *
* *
* Power Electronics Specialists Conference, 1998. *
* PESC 98 Record. 29th Annual IEEE *
* *
* SUPPORTemail: simulate@infineon.com *
*****************************************************************
..SUBCKT SKW20N60HS_L2 ano gate kat PARAMS: TJ = 27
LANO ano anol 5n
RLAN ano anol 1
LKAT katl kat 7n
RLK katl kat 1
XIGBT anol gate katl L7xxxU_L2 PARAMS: TJ = {TJ} A_total 0.185 A_aktiv=0.142
XDIO katl anol L4XXX-M PARAMS: TJ = {TJ} A=0.0512 N_ideal = 1.05
..ENDS
..SUBCKT SKW30N60HS_L2 ano gate kat PARAMS: TJ = 27
LANO ano anol 5n
RLAN ano anol 1
LKAT katl kat 7n
RLK katl kat 1
XIGBT anol gate katl L7xxxU_L2 PARAMS: TJ = {TJ} A_total 0.257 A_aktiv=0.207
XDIO katl anol L4XXX-M PARAMS: TJ = {TJ} A=0.067 N_ideal = 1.05
..ENDS
..SUBCKT L4XXX-M anode kath PARAMS: TJ= 27 A = 1 N_ideal = 1
* physical parameters: Nd = 1.2e14
..PARAM
+q = 1.602e-19 eps0 = 8.85e-14 epsi = 11.8
+kb = 1.38e-23 T0 = 273 ni0 = 1.45e10
+un = 1350 up = 450
..PARAM tau = 0.5u
..PARAM Nd = 1.2e14 w0 = 70e-4
..PARAM SF = -1 BV = 800 Rc = .6m
..PARAM vlimit =1.5e7
..PARAM Vdiff= 0.396m
..PARAM Ut = 23.5m
..PARAM D = 15.87
..PARAM L = 2.817m
..PARAM Ise0 = {A*356.2p}
..PARAM Ise_g = {A*0.333p}
..PARAM Ism0 = {A*26.173u}
..PARAM Ism_g = {A*2*q}
..PARAM CJ0 = {A*3.787n}
..PARAM QN = {A*134.57n}
..PARAM XF = 3610.7
..PARAM VPT= 450
..PARAM a0 = {SF*tanh(1.2425)}
..PARAM a1 = {(up/un)*(1 + a0)/(1 - a0)}
..PARAM a2 = {0.1/((1 - 0.5*(1 - a1*a1)*(1 - a0)) )}
..PARAM Rd0 = {269.72m/A}
..PARAM Ra = {739.82u/A}
RSERIE anode ano {Ra}
GDE ano mi VALUE + {LIMIT(TANH(1e3*I(VDE))*(((ISE(TJ)**((t0 + TJ)/(t0 +
27)))/ISE(27))**((t0 + 27)/(t0 + TJ))
+ * ABS(I(VDE))**((t0 + 27)/(t0 + TJ)) - ABS(I(VDE))),-1e6,1e6)}
GD0 ano mi1 VALUE + {LIMIT(TANH(1e3*I(VD0))*(((ISM(TJ)**((t0 + TJ)/(t0 +
27)))/ISM(27))**((t0 + 27)/(t0 + TJ))
+ * ABS(I(VD0))**((t0 + 27)/(t0 + TJ)) - ABS(I(VD0))),-1e6,1e6)}
VDE ano ano1 0
DE ano1 mi D1
D0 ano2 mi1 D2
VD0 ano ano2 0
..model D1 D (is={Ise0}, N= {N_ideal})
..model D2 D (is={Ism0}, N=2)
VID0 mi1 mi 0
VITOT kat kathv 0
EVDIFF kathv kath VALUE = {(TJ + t0)* Vdiff}
EGIR mi kat VALUE = {I(VITOT)*Rd(V(q,0),TJ)}
GID ano mi VALUE = {IQ(V(xj,0),I(VID0),V(q,0),I(VDXJ),TJ) - I(VIJCT)}
RGID mi 0 100meg
CQB q 0 1u
RHELP q 0 1meg
GRQB q 0 VALUE = {1u*V(q,0)/(Tau*((TJ + t0)/300)**2) }
GIQ 0 q VALUE = {MAX(I(VID0),0) +
IQ(V(xj,0),I(VID0),V(q,0),I(VDXJ),TJ)}
EXJ xj1 0 VALUE {MAX(xj(V(ano,mi),I(VITOT),V(xj1,0)),1e-4) }
CXJ xj 0 1n
VDXJ xj1 xj 0
EJUNCT jct 0 VALUE = {LIMIT(V(kat,ano),0,VPT)}
VIJCT jct cp 0
DJCT 0 cp DXXX
..MODEL DXXX D (is = 1p, CJO= {CJ0})
..FUNC EG(T) {1.16 - 7.02e-4*(T + t0)**2/(T + t0 + 1108)}
..FUNC DA(T) {2*kb*un*up/q/(un + up)*(T + t0)*(((T + t0)/300)**-1.5)}
..FUNC ISE(T) {(T + t0)*un*(((T + t0)/300)**-1.5)*((ise_g*(ni0*((T
+ t0)/300)**1.5*exp(1/(2*8.61e-5)
+ *(-300*EG(T)+(t0 + T)*EG(27))/(T + t0)/300)))
+ *(kb*(ni0*((T + t0)/300)**1.5*exp(1/(2*8.61e-5)*(-300*EG(T)+(t0 +
T)*EG(27))/(T + t0)/300))))}
..FUNC ISM(T) {Ism_g*(ni0*((T +
t0)/300)**1.5*exp(1/(2*8.61e-5)*(-300*EG(T)+(t0 + T)*EG(27))/(T +
t0)/300))
+ *sqrt(DA(T)/(Tau*((T + t0)/300)**2))}
..FUNC xj(V,Y2,X)
{0.5*((XF*XF*((1-limit(V,-VPT,0)))/(Nd+MAX(up*(-Y2)/(un+up),0)/A/q/(vlimit)))/MAX(X,.1m)
+ MAX(X,.1m))}
..FUNC w(V) {MAX((w0-V)*(1 + a1),1e-4)}
..FUNC Rd(Z,T) {w0*w0/(un*QN*(((T + t0)/300)**-1.5) + (un +
up)*MAX(Z,1m*QN)*1e-6*(((T + t0)/300)**-1.5))}
..FUNC Td(V,U,T) {a2*w(V)*w(V)/DA(T)/(1 +
w(V)*1e9*LIMIT(U,0,1)/4/DA(T))}
..FUNC IQ(V,Y,Z,U,T) {((Tau*((T + t0)/300)**2)*Y -
MAX(Z,1m*QN)*1e-6)/(Td(V,U,T))}
* end of functions
..ends
..SUBCKT L7xxxU_L2 ano gate kat PARAMS: TJ = 27 A_total 0.1 A_aktiv=0.1
..PARAM
+k=1.380622e-23 q = 1.6E-19 t0=273 ni0=1.45e10
+eps0 = 8.85E-14 epsi =11.8 eox= 2.8
+un = 1350 up = 450 u_surf=600
+a1 = 0.55 vlimit= 1.5e7 vsw= -0.5
..PARAM tox = 80e-7 ttox = 1.5e-4 wb = 90E-4 lchann = 2.5e-4
..PARAM n_cells = {A_aktiv*118.91k}
..PARAM wchann = {n_cells*5.2m}
..PARAM Agd = {n_cells*6.72u}
..PARAM Cox = {Agd*30.975n}
..PARAM Cgs = {n_cells*4.536e-14}
..PARAM Nb = 15E13 taub = 125u Nsource= 1.5e17 BV_FW=800 BV_RW=280
..PARAM Rs = 2.5m Rg = 0.5
..PARAM Cjs = {A_aktiv*4.2338n}
..PARAM Cje = {(A_total/A_aktiv)*Cjs}
..PARAM Ise_x = {A_total*940.1p}
..PARAM Ise_g = {A_total*0.8p}
..PARAM Ise_k = {A_total*15.668p}
..PARAM EG0 = {1.16 - (7.02e-4*(t0+27)**2/((t0+27)+1108))}
..PARAM ni_fak = {ni0*exp(EG0*q/(2*k*(t0+27)))}
..PARAM D = 17.55
..PARAM L = 46.837m
..PARAM Q0 = {A_aktiv*216.27n}
..PARAM VPT= 930
..PARAM VN = {2.51e-17*Agd*Agd/Cox/Cox}
..PARAM XF = 294.82u
..PARAM islimit = 0.3f
MFET d g s s MOS W={wchann/100},L={lchann/100} , IC=OFF
GMFET_T d1x s VALUE = {LIMIT(I(VINC0)*((TJ+t0)/300)**-1.5,0,1e6) }
GDE ano e1 VALUE + {LIMIT(TANH(1e3*I(VDE))*(((ISE2(TJ)**((t0 + TJ)/(t0 +
27)))/ISE2(27))**((t0 + 27)/(t0 + TJ))
+ * ABS(I(VDE))**((t0 + 27)/(t0 + TJ)) - ABS(I(VDE))),-1e6,1e6)}
VDE ano anx 0
DE anx e1 D1
DS kat d1 D2
..MODEL MOS NMOS
(LEVEL=3,nsub={Nsource},tox={tox/100},vmax={vlimit},uo={u_surf},CGSO=1p,CGDO=1p)
..MODEL D1 D (IS={Ise_x},N =1.1)
..MODEL D2 D (IS={Ise_k},CJO={CJS},BV= {2*BV_FW})
ETHERM g_t g VALUE = {DVt(TJ)}
RG gate g_t {Rg*(((TJ + t0)/300)**1.5)}
RS s kat {Rs}
EVGCOX vgcox 0 VALUE { V(ox,kat)-{vsw} }
RVGC vgcox 0 100meg
GICOX g ox VALUE = {LIMIT((Cox/100 +
99*Cox*(1+tanh(10*(V(vgcox))))/200)* 1e9*I(VDUGD),-100,100)}
GICGS g s VALUE = {LIMIT((Cgs +
99*Cox*(1+tanh(-10*(V(vgcox))))/200)*1e9* I(VDUGS),-100,100)}
EDEP d1 ox VALUE = {LIMIT(Vdep(V(d1,g),V(xj,0)),0,V(d1,g))}
RDEP ox 0 100meg
EGIA e d1 VALUE = {I(VIA)*Rb(V(b,0),TJ)}
GIC d1 kat VALUE {LIMIT(IPC(I(VINC),V(b,0),V(xj,0),I(VDXJ),TJ),-1e6,1e6)}
RGIC d1 0 100meg
CQB b 0 1u
RHELP b 0 1meg
GRQB b 0 VALUE {1u*V(b,0)/(Taub*((TJ + t0)/300)**2) }
GINC 0 b VALUE {MAX(I(VINC),0)}
GINE b 0 VALUE {INE(I(VINC),V(b,0),V(xj,0),I(VDXJ),TJ)}
VIA e1 e 0
EAUX1 d12 s VALUE = {V(d1,s)}
VINC0 d12 d 0
VINC d1 d1x 0
EXJ xj1 0 VALUE {MAX(xj(V(d1,kat),V(xj1,0)),1e-4)}
CXJ xj 0 1n
VDXJ xj1 xj 0
EDUGS du1 0 VALUE {V(g,s)}
VDUGS du1 du1c 0
CDUGS du1c 0 1n
EDUGD du2 0 VALUE {V(g,ox)}
VDUGD du2 du2c 0
CDUGD du2c 0 1n
..FUNC EG(T) {1.16 - 7.02e-4*(T+t0)**2/(T+t0 + 1108)}
..FUNC
ni(T) {1e-10*ni0*((T+t0)/300)**1.5*exp(1/(2*8.61e-5)*(-300*EG(T)+(t0+T)*EG(300))/(T+t0)/300)}
..FUNC psi2(T) {2*k/q*(T + t0)*(log(Nsource/ni(T)) - log(1e10))}
..FUNC DVt(T) {psi2(T) - psi2(27) +
tox*(sqrt(2*eps0*epsi*q*Nsource*psi2(T))
+ - sqrt(2*eps0*epsi*q*Nsource*psi2(27)))/eps0/eox}
..FUNC DA(T) {2*k*un*up/q/(un + up)*(T + t0)*(((T + t0)/300)**-1.5)}
..FUNC LA(T) {sqrt(DA(T) * Taub*((T+t0)/300)**2) }
..FUNC ISE2(T) {LIMIT(1e20*ise_g*k*(T
+t0)*(un*((T+t0)/300)**-1.5)*ni(T)*ni(T),0,1e8)}
..FUNC Vdep(V,X) {LIMIT(V - Agd/Cox * (q*Nb)* X,0,V)}
..FUNC Rb(X,T) {wb*wb/(un*Q0*(((T + t0)/300)**-1.5) + (un +
up)*MAX(X,1m*Q0)*1e-6*(((T + t0)/300)**-1.5))}
..FUNC xj(V,X) {LIMIT(0.5*(XF*XF*(1+LIMIT(V,0,VPT))/MAX(X,.1m)
+MAX(X,.1m)),.1m,wb-1e-4)}
..FUNC FDX(V,X,T) {TANH(MAX(wb-V,.1m)*1e9*LIMIT(X,0,1)/(24*DA(T)))}
..FUNC Td(V,X,T) {LIMIT((0.1/DA(T))*MAX(wb-V,.1m)*MAX(wb-V,.1m)*(1-FDX(V,X,T)),-1e6,1e6)}
..FUNC F1(V,T) {LIMIT(Taub*((T+t0)/300)**2*(COSH(MAX(wb-V,.1m)/LA(T))-1),-1e6,1e6)}
..FUNC F2(V,X,T) {LIMIT(0.5*(1+2*FDX(V,X,T)/(1+FDX(V,X,T)*FDX(V,X,T))),-1e6,1e6)}
..FUNC F3(V,X,T) {LIMIT(1+Td(V,X,T)/(Taub*((T+t0)/300)**2),-1e6,1e6)}
..FUNC QS0(V,T) {LIMIT(q*A_aktiv*LA(T)*1e10*ni(T)*TANH(0.5*MAX(wb-V,.1m)/LA(T)),0,1e6)}
..FUNC Qbd(Y,Z,V,X,T) {LIMIT(MAX(Z,1m*Q0)*1e-6+Td(V,X,T)*Y,0,1e6)}
..FUNC Qb0(Y,Z,V,X,T) {LIMIT(2*Qbd(Y,Z,V,X,T)/(F3(V,X,T)+SQRT(F3(V,X,T)*F3(V,X,T)
+ +
Td(V,X,T)*3*MAX(ISE2(T),islimit)*Qbd(Y,Z,V,X,T)/QS0(V,T)/QS0(V,T))),0,1e6)}
..FUNC INE(Y,Z,V,X,T) {LIMIT(0.75*MAX(ISE2(T),islimit)*(Qb0(Y,Z,V,X,T)/QS0(V,T))*(Qb0(Y,Z,V,X,T)/QS0(V,T)),0,1e6)}
..FUNC IPC(Y,Z,V,X,T) {LIMIT((1/3)*Y+(4/3)*(Qb0(Y,Z,V,X,T)/F1(V,T)
+
+MAX(Qb0(Y,Z,V,X,T)/Taub/((T+t0)/300)**2+INE(Y,Z,V,X,T)-Y,0)*F2(V,X,T)),0,1e6)}
..ENDS
Ich verwende zur Zeit das Modell des SKW20N60HS. Es handelt sich
hierbei um einen IGBT mit eingebauter Freilaufdiode. Insofern werden
durch das Modell eigentlich zwei Bauteile beschrieben.
Wenn ich diese Bibliothek in LTspice einbinde, bekomme ich am Ende der
Simulation die folgende Fehlermeldung:
Circuit: * E:\Projekte\DDx00\doc\igbt2.asc
Error on line 162 : m:u1:igbt:fet u1:igbt:d u1:igbt:g u1:igbt:s
u1:igbt:s u1:igbt:mos w= 0.87803144 ,l= 2.5e-006 , ic=off
No such parameter on this device
Early termination of direct N-R iteration.
Direct Newton iteration failed to find .op point. (Use ".option
noopiter" to skip.)
Starting Gmin stepping
Gmin = 10
vernier = 0.5
vernier = 0.25
Gmin = 3.62829
vernier = 0.125
vernier = 0.0625
vernier = 0.03125
vernier = 0.015625
vernier = 0.0078125
vernier = 0.00390625
vernier = 0.00195313
vernier = 0.000976563
Gmin = 3.73824
vernier = 0.000488281
vernier = 0.000244141
vernier = 0.00012207
vernier = 6.10352e-005
vernier = 3.05176e-005
vernier = 1.52588e-005
vernier = 7.62939e-006
vernier = 3.8147e-006
vernier = 1.90735e-006
vernier = 9.53674e-007
Gmin = 3.73824
vernier = 4.76837e-007
vernier = 2.38419e-007
vernier = 1.19209e-007
vernier = 5.96046e-008
vernier = 2.98023e-008
vernier = 1.49012e-008
vernier = 7.45058e-009
vernier = 3.72529e-009
vernier = 1.86265e-009
vernier = 9.31323e-010
Gmin = 3.73824
vernier = 4.65661e-010
vernier = 2.32831e-010
vernier = 1.16415e-010
vernier = 5.82077e-011
vernier = 2.91038e-011
Die Fehlermeldung erscheint erst am Ende des Simulationsdurchlaufes,
wobei die Ergebnisse eigentlich plausibel sind und sich mit
physikalisch durchgeführten Messungen decken .
Hat jemand schon einmal ein solches Problem gehabt und weiß, wie man
es abstellt ?
Bezieht sich die Angabe der Zeile in der Fehlermeldung auf das Modell ?
In den Modell taucht ein Parameter TJ (Chiptemperatur ?) auf. Kann man
hier möglicherweise das Verhalten des IGBT auch bei verschiedenen
Chiptemperaturen simulieren.
Falls hier jemand Rat weiß, wäre ich für einen Hinweis sehr dankbar.
Vielen Dank
Ralf Bartling